Главная » Компьютер, железо » Блок питания из кадрового трансформатора телевизора. Испытания выходных трансформаторов Паспортные данные звукового трансформатора тв 3ш

Блок питания из кадрового трансформатора телевизора. Испытания выходных трансформаторов Паспортные данные звукового трансформатора тв 3ш

Отслужившие свой век старые ламповые телевизоры ныне все чаще выбрасывают на свалку. Между тем в них остается много ценных и вполне пригодных деталей, в частности, трансформаторы, вновь намотать которые сумеет далеко не каждый. Для нас представляют, в первую очередь, интерес выходные трансформаторы кадровой развертки, имеющие небольшие габариты и массу. Их существует несколько разновидностей (см. таблицу 1).


Наиболее простой «кадровик» марки ТВК-70Л2 имели самые старые телевизоры (с углом отклонения лучей 70°). Он снабжен всего двумя обмотками - I и II. Первичная I с выводами 1 и 2 содержит 3000 витков провода марки ПЭВ-1 диаметром 0,12 мм. Вторичная II с выводами 3 и 4 имеет всего 146 витков провода той же марки, но уже диаметром 0,47 мм. Если обмотку I включить в сеть, на обмотке II появится переменное напряжение, чуть превышающее 10 В. Выпрямив его, мы будем иметь постоянное напряжение порядка 14 В. От этого трансформатора можно отбирать ток, не превышающий 0,5 А. С ростом тока выпрямленное напряжение заметно снижается.

Остальные трансформаторы - от более современных телевизоров (с углом отклонения 110°). Они имеют уже не две, а целых три обмотки. Впрочем, обмотка III нам вряд ли потребуется. Дело в том, что напряжение на ней слишком велико (порядка 30 В). Да и намотана она чересчур тонким проводом, что весьма ограничивает потребляемый ток.

Трансформаторы ТВК-110ЛМ и ТВК-110Л-2 имеют близкие параметры. По габаритам и массе они лишь чуть больше предыдущего трансформатора. Но их обмотка II способна после выпрямления сформировать на конденсаторе постоянное напряжение, близкое к 18 В. От этой обмотке можно отбирать (через выпрямитель) до 0,4 А постоянного тока.

Кадровый трансформатор марки ТВК-1 ЮЛ-1 - наиболее мощный из всей этой четвертки. Его габариты и масса, естественно, превышают те же показатели остальных «кадровиков». Однако напряжение на его обмотке II высо-ковато, что нередко сдерживает область его применения. Ведь обычно в быту нам бывает нужно напряжение в пределах всего 9...12 В, а часто и еще ниже - 3...5 В. Данный же трансформатор после выпрямления способен обеспечить постоянное напряжение около 30 В (при токе до 1 А).

Чтобы выходное напряжение источника осталось неизменным при колебаниях напряжения сети и потребляемого тока, блок питания должен обязательно содержать электронный стабилизатор. На базе кадрового трансформатора от старого телевизора можно собрать такой универсальный источник. Он способен обеспечить ваши самоделки стабилизированным постоянным напряжением до 12 В при потребляемом токе до 0,3 А. Выходное напряжение этого блока питания имеет незначительные пульсации, поэтому к нему можно смело подключать любую радиоаппаратуру, включая высококачественную. Блок снабжен защитой от короткого замыкания (КЗ), что надежно предохраняет подключаемый аппарат от выхода из строя из-за пробоя регулирующего транзистора в стабилизаторе.

Блок питания (см. рисунок) содержит кадровый трансформатор ТВК-110ЛM (ТВК-110Л-2) Т1, выпрямительный диодный мост VD4 и оксидный конденсатор С1, на котором формируется постоянное напряжение 18 В. Стабилизатор собран на резисторах R1-R3, транзисторах VT1, VT2 и стабилитроне VD2. При верхнем (по схеме) положении движка переменного резистора R2 на гнездах XS1 присутствует напряжение около 12 В, а при нижнем - около нуля. Если в вашем распоряжении окажется готовый составной транзистор (допустим, КТ829А, КТ972А), транзисторы VT1, VT2 можно заменить одним таким. Его базу соединяют с движком переменного резистора R2, а эмиттер и коллектор подключают так, как включены одноименные электроды транзистора VT1.

Работает он так. Цепь, состоящая из резистора R4 и стабистора VD3, постоянно стремится открыть транзистор VT3. Однако закрытый выходным напряжением диод VD1 мешает этому. Более того, потенциал эмиттера транзистора VT3 выше потенциала его же базы. Значит, если даже попытаться замкнуть перемычкой диод VD1, транзистор VT3 все равно остается закрытым. (Замыкать диод VD1 на практике не рекомендуется - он нужен для повышения надежности работы транзистора VT3!).

Когда же происходит КЗ, выходное напряжение на клеммах XS1 пропадает. Тогда потенциал базы транзистора VT3 оказывается выше потенциала его эмиттера, поэтому диод VD1 и транзистор VT3 открываются, закрывая собой стабилитрон VD2. Вследствие этого транзисторы VT2 и VT1 закрываются, препятствуя прохождению тока от выпрямителя на выходные клеммы XS1.

Как только причина КЗ устранена, происходит автоматическое восстановление работы блока питания, что упрощает обращение с ним. Стабистор КС119А (VD3) можно заменить тремя последовательно соединенными непременно кремниевыми диодами (например, серий КД102, КД103, КД105, КД106, КД209 и др.). Сопротивление резистора R4 зависит от напряжения выпрямления. Если вместо 18 В оно равно 14 В (при использовании трансформатора ТВК-70Л2) или 30 В (с трансформатором ТВК-110Л-1), номинал R4 нужно уменьшить до 3,9 кОм или увеличить до 8,2 кОм соответственно.

Чтобы предварительно убедиться в правильной работе собранного узла защиты, нужно катод диода VD1 временно отключить от плюсовой клеммы и соединить его с минусовой клеммой (место разрыва на схеме условно отмечено крестиком). Напряжение на выходе блока (между гнездами разъема XS1) не должно превышать 0,01 В - такое маленькое напряжение замеряют цифровым вольтметром. Если это не так, транзистор VT3 следует заменить другим.

Данную проверку проводят при различных положениях движка резистора R2. Если при чрезмерно низком (меньшем 3 В) выходном напряжении защита вдруг не срабатывает, придется продолжить подбор транзистора VT3. Ограничить выходное напряжение снизу можно, включив последовательно с переменным резистором R2 постоянный резистор небольшого номинала. Он должен связывать нижний вывод резистора R2 с минусом конденсатора С1.

Транзистор КТ379А (VT3) имеет завидно небольшое напряжение перехода «коллектор-змиттер» в открытом состоянии (менее 0,1 В). Взамен него можно установить транзистор КТ373А или транзистор серии КТ342 - с буквенным индексом А, AM, Б, БМ или даже В, ВМ. Другие транзисторы (скажем, КТ315Г) тут использовать не советую, диод ГД507А (VD1) может быть заменен другим импульсным или высокочастотным германиевым ГД508А, ГД508Б, Д18 или даже серий ГД511, Д9 или Д2. Стабилитрон Д814Д взаимозаменяем с 2С212Ж, 2СМ213А, КС213Б, 2С213Б, Е или Ж, КС512А, 2С512А или устаревшие Д811, Д813, Д815Д.

Транзистор КТ315Г (VT2) заменим на КТ315Е. Вместо транзистора КТ817Г (VT1) годится любой транзистор серий КТ815, КТ817, КТ819. Но рекомендуется выбирать транзистор с наибольшим коэффициентом усиления тока и наиболее «высоковольтный» по напряжению «коллектор-эмиттер». Это же относится и к транзистору VT2.

Если этот блок предполагается использовать в роли «адаптера», питающего только одну нагрузку, допустим, плейер, переменный резистор R2 заменяют двумя постоянными резисторами, соединенными последовательно и имеющими общее сопротивление 2 кОм. Отношение номиналов резисторов подбирают таким, чтобы на выходе блока формировалось нужное напряжение.

Но есть и другой путь. Вместо стабилитрона Д814Д устанавливают стабилитрон с более низким или более высоким напряжением стабилизации. Тогда резистор R2 вообще исключают. Сопротивление же резистора R3 должно быть другим (см. таблицу 2). Тут приведены данные по наиболее характерным выходным напряжениям стабилизатора в пределах от 3 до 25 В.



Следует учитывать, что чем больше разница между выходными напряжениями выпрямителя и стабилизатора, тем лучше качество стабилизации. Но зато тем менее экономично он работает и тем сильнее нагревается регулирующий транзистор VT1. Он должен быть помещен на теплоотвод, сделанный из алюминиевой пластины размером 40x70x2 мм. Ее закрепляют строго вертикально, а транзистор крепят снизу пластинками.

Собранный навесным монтажом блок питания с трансформатором ТВК-70Л2, ТВК110ЛМ или ТВК-110Л-2 легко умещается в корпусе 75x130x75 мм. Габариты блока с трансформатором ТВК-110Л-1 получаются немного больше. Если же вместо навесного монтажа применить печатную плату, размеры блока питания заметно сокращаются.

Этому способствуют и малые габариты моста КЦ405А (VD4). Кстати, тут годится любая диодная сборка серий КЦ405 (лучше для печатного монтажа) или КЦ402 (хуже). Можно применить и четыре диода, например, серий КД105, КД106, КД209, Д226 или даже Д7 (с трансформаторами ТВК-70Л2, ТВК-110ЛМ, ТВК-1 ЮЛ-2). Поскольку диоды Д7 германиевые, выходное напряжение выпрямителя будет увеличено приблизительно на 1 В (до 15 и 19 В соответственно). С трансформатором ТВК-110Л-1 потребуются более мощные диоды, допустим, серий КД208, КД226 или КД202. С этим трансформатором следует применять сборки серий КЦ402 или КЦ405, имеющие буквенный индекс от А до Е.

Журнал «САМ» №2, 1997 год

В статье дается краткий анализ и определены реально достижимые параметры лампового триодного однотактного усилителя с унифицированным выходным трансформатором ТВЗ от телевизионного приемника. Рассмотрен способ переделки трансформатора, позволяющий улучшить его параметры. Приведены практическая схема усилителя и результаты испытаний. Подход, предложенный автором, может быть применен при разработке более мощных ламповых УМЗЧ.

Статья предназначена для радиолюбителей средней квалификации, рекомендации ограничены сведениями, дающими возможность повторить усилитель всем желающим.

Разговоры про чудо лампового звука вызывают естественное желание зто чудо услышать. И первая проблема, с которой столкнутся те, кто захочет повторить какой-либо ламповый усилитель, - это выходной трансформатор. Решить ее можно тремя способами. Можно изготовить его самостоятельно, это возможно, но совсем непросто. Можно купить хороший выходной трансформатор, это просто, но совсем недешево. А можно попытаться использовать что-нибудь доступное и недорогое.

Изучение радиорынка показало, что наиболее доступны выходные трансформаторы (ТВЗ) от старых телевизоров. Выбор широкий, а цена - от 0 3 до 0,6 долл., в зависимости от настроения продавца. Чаще всего встречаются ТВЗ-1-9, они и были приобретены для экспериментов. Купил я и трансформаторы других типов для сравнения. Как оказалось впоследствии, лучшими параметрами обладают трансформаторы ТВЗ-1 -1 и ТВ-2А-Ш - наиболее почтенного возраста, но ТВЗ-1 9 в продаже было больше, именно с ними я решил экспериментировать дальше.

Задача была поставлена следующим образом: попытаться улучшить параметры трансформатора его переделкой (без перемотки), а потом спроектировать выходной каскад таким образом, чтобы максимально скомпенсировать его оставшиеся недостатки. Очевидно, что выходная мощность такого усилителя будет относительно невелика, однако главным было не получение большой мощности, а поиск принципиальных решений.

Немного теории

Чтобы разобраться, куда надо двигаться, вспомним, какие параметры трансформатора на что влияют. Если обратиться к классикам (например, ) то, не вдаваясь в тонкости, можно сказать, что определяющими являются шесть параметров: индуктивность первичной обмотки, амплитуда магнитной индукции, индуктивность рассеяния, собственная емкость, сопротивление обмоток и коэффициент трансформации.

Параметры имеющихся трансформаторов были измерены, и вот что получилось:

  • индуктивность первичной обмотки L1 - 6,5 Гн:
  • индуктивность рассеяния (приведенная к первичной обмотке) Ls 56 мГн;
  • емкость (приведенная к первичной обмотке) С - 0.3 мкФ;
  • активное сопротивление первичной обмотки r1 - 269 Ом;
  • активное сопротивление вторичной обмотки r2 - 0,32 Ом;
  • коэффициент трансформации n - 37.

Здесь приведены усредненные данные, одинаковыми у трансформаторов оказались, к сожалению, только надписи на катушках. Материал магнитопровода остался неизвестен, но после снятия кривых намагничивания я склоняюсь к мысли, что это сталь Э44 (высоколегированная, предназначенная для работы в средних полях повышенной частоты). В принципе, что есть - то есть, но для расчетов надо было иметь стартовую точку.

Оценим, какие параметры можно ожидать при использовании таких трансформаторов. Чаще всего их применяли в простых усилителях с выходными лампами 6Ф5П, 6ФЗП, 6П1П, 6П14П в триод-ном включении. В этом случае выходное сопротивление ламп находится в интервале 1,3...2 кОм. Для расчетов примем усредненное значение - 1,7 кОм. На рис. 1 показана упрощенная эквивалентная схема трансформатора, подключенного к лампе, которая представлена как генератор G1 с выходным сопротивлением R, (все приведено к первичной стороне трансформатора).

Параметры большого сигнала

Посмотрим, как обстоят дела с индукцией в магнитопроводе. Так как индукция обратно пропорциональна частоте, то наиболее интересна именно область низких частот, где она достигает максимальных значений. Фактически, допустимая индукция определит максимальную мощность, которую может передать трансформатор в области низких частот при приемлемых искажениях. Амплитуда индукции в магнитопроводе определяется по известной формуле

где E1 - напряжение, приложенное к первичной обмотке, В; f - частота сигнала, Гц; S - активная площадь сечения магнитопровода. см2; W1 - число витков.

Эту зависимость удобно сразу выразить через мощность в нагрузке. Напряжение Е1, приложенное к первичной обмотке, равно сумме напряжений на нагрузке R2" и на сопротивлении обмотки г2" Индуктивностью рассеяния Ls2" на низких частотах можно пренебречь. Следует учесть, что через первичную обмотку протекает ток покоя лампы I0 , создающий намагничивающее поле, которое, в свою очередь, определяет начальное значение индукции В0. По моим расчетам, оно приблизительно равно 0,3Т. После преобразования формула принимает вид

Для расчетов вручную эта формула чересчур громоздка, но при компьютерных вычислениях громоздкость не имеет значения. Рассчитанные для трех значений частоты зависимости индукции от выходной мощности показаны на рис. 2.

Если учесть, что материал магнитопровода начинает насыщаться при индукции около 1,15Т (это выяснилось при снятии основной кривой намагничивания), и допустить максимальную индукцию, равной приблизительно 0,7 Т, то из графиков видно, какую выходную мощность можно получить в области низких частот: на частоте 30 Гц - всего около 0,25, на 50 Гц - приблизительно 0,8 Вт, а на 100 Гц индукция уже перестает быть ограничивающим фактором. Превышение этих значений не только сильно повышает уровень гармоник, вносимых трансформатором, но и увеличивает уровень гармоник, генерируемых лампой из-за уменьшения входного сопротивления трансформатора. Измерения в реальном каскаде (на лампе 6Ф5П) показали, что при выходной мощности 1 Вт уменьшение частоты сигнала с 1 кГц до 50 Гц приводит к возрастанию уровня гармоник более чем в два раза.

Параметры малого сигнала

Оценим влияние трансформатора на частотные свойства усилителя при работе его на малой мощности, когда проблем с индукцией нет (например, усилитель предназначен для телефонов). В этом случае удобнее производить оценку, воспользовавшись такими параметрами трансформатора, как индуктивность первичной обмотки и индуктивность рассеяния.

Из рис. 1 видно, что в области низких частот лампа нагружена на две параллельные цепи (индуктивностями рассеяния пренебрегаем). Первая - это индуктивность намагничивания L1, через которую течет ток намагничивания IL1, вторая - цепь нагрузки, состоящая из последовательно включенных сопротивлений R2" и R2", через которую протекает ток I2. По мере снижения частоты сигнала реактивное сопротивление L1 падает, соответственно IL1 растет, а I2 уменьшается. Кроме снижения коэффициента передачи каскада, наблюдается, в общем случае, еще одна неприятная вещь - падает входное сопротивление трансформатора, что приводи к уменьшению сопротивления анодной нагрузки лампы и, соответственно, к росту коэффициента гармоник. Для оценки влияния индуктивности первичной обмотки воспользуемся широко известной упрощенной формулой :

где ML - коэффициент частотных искажений; R0 - сопротивление эквивалентного генератора, определяемое из выражения

На рис. 3 приведены результаты расчета частотных искажений каскада в области нижних частот с выходным трансформатором ТВЗ-1-9 для трех значений выходного сопротивления лампы.

Из графиков видно, что при выходном сопротивлении лампы 1700 Ом (средняя кривая) спад АЧХ на 3 дБ происходит на частоте около 40 Гц. Снижение выходного сопротивления лампы приводит к уменьшению частотных искажений (верхняя кривая).

Но не будем делать скоропалительных выводов и посмотрим, что происходит в области верхних частот.

Из рис 1 следует, что индуктивности рассеяния включены последовательно с нагрузкой (L1 можно не учитывать, так как в области высоких частот ток IL1 ничтожно мал), с повышением частоты их реактивное сопротивление растет а это приводит к уменьшению выходной мощности. Коэффициент частотных искажений определим по формуле

где Мн - коэффициент частотных искажений; Ц - индуктивность рассеяния, приведенная к первичной обмотке (измеренное значение).

На рис. 4 показаны результаты расчетов частотных искажений каскада с тем же трансформатором в области верхних частот для трех значений выходного сопротивления лампы.

Но не все потеряно! Изменив конструкцию трансформатора, мы можем воздействовать на индуктивность первичной обмотки и амплитуду индукции, а это совсем не мало.

Переделка трансформатора

Единственное, что можно сделать в данном случае, - изменить способ сборки магнитопровода В заводском исполнении он выполнен с зазором (диэлектрической прокладки обычно нет, зазор образуется из-за неплотного прилегания пакетов Ш-образных и замыкающих пластин) Давайте ликвидируем зазор сборкой пластин магнитопровода вперекрышку и посмотрим, что получится.

Для начала трансформатор надо освободить от металлической обоймы, предварительно разогнув ее крепежные лапки. Далее, изъяв из катушки магнитопровод, аккуратно отделите пластины одну от другой и соберите вновь, укладывая их вперекрышку. Делайте это тщательно (для уменьшения зазора) и обязательно используйте все пластины. Возможно, замыкающих пластин не хватит, поэтому желательно иметь второй трансформатор с таким же магнитопроводом Если переделываете два трансформатора (для стереофонического усилителя), число пластин в обоих должно быть одинаковым (естественно, в этом случае может понадобиться еще один в качестве "донора")

После сборки поставьте магнитопровод широкой стороной на ровную поверхность (кусок фанеры, гетинакса, текстолита) и легкими ударами киянки по выступающим торцам пластин добейтесь того, чтобы они расположились заподлицо с остальными. Эту операцию повторите, перевернув магнитопровод на противоположную сторону. Вид переделанно о трансформатора на этом этапе показан на рис. 5. Готовый трансформатор желательно снова вставить в обойму. Легче всего это сделать, используя большие слесарные тиски, но особенно не усердствуйте большие механические напряжения ухудшают магнитные свойства стали.

Так как переделанный трансформатор не может работать с подмагничиванием, для его возбуждения необходимо использовать другой тип выходного каскада.

Выходной каскад

Самый очевидный путь - использовать так называемый дроссельный выходной каскад и отделить трансформатор от анодной цепи лампы конденсатором (рис. 6).

Наиболее подходит в данном случае выходной каскад с источником тока в анодной цепи (рис. 7), обладающий рядом преимуществ по сравнению с дроссельным. Высокое выходное сопротивление источника тока позволяет получить от лампы максимальное усиление, каскад имеет более широкую полосу воспроизводимых частот, менее требователен к качеству источника питания, конструкция в целом имеет меньшие габариты.

Существуют и недостатки. Самый неприятный заключается в том, что напряжение питания каскада с источником тока должно быть значительно выше (как минимум, в полтора раза по сравнению с дроссельным) Эффективность каскада, соответственно, меньше, и схема гораздо сложнее.

Источник тока можно выполнить как на лампе, так и на транзисторах. Я склонился к транзисторному варианту по следующим причинам В этом случае достижима более высокая стабильность тока, минимальное рабочее напряжение - гораздо ниже (и без того необходимо весьма высокое анодное напряжение), не требуется дополнительная накальная обмотка для лампы источника тока.

Особое внимание необходимо уделить разделительному конденсатору С1. Его качество влияет на выходной сигнал, так как через него протекает выходной ток лампы. Оксидные конденсаторы здесь применять недопустимо, можно использовать только бумажные и полиэтилентерефталатные (например, К73-17 с номинальным напряжением не менее 400 В; нужную емкость получают параллельным соединением требуемого числа конденсаторов).

Схема усилителя

Принципиальная схема усилителя изображена на рис. 8, там же указаны режимы ламп по постоянному току. Выбор активных компонентов в основном определился возможностью их приобретения широким кругом радиолюбителей.

(нажмите для увеличения)

Усилитель двухкаскадный: первый выполнен на триодной части лампы VL1, второй (выходной) - на ее пентодной части. В обоих каскадах в анодной цепи используются источники тока. Преимущества такого схемного решения в выходном каскаде мы обсудили выше, использование источника тока в каскаде предварительного усиления также вполне обосновано.

Во-первых, это позволяет получить от лампы максимальное усиление. Во вторых, ее работа при фиксированном токе позволяет снизить коэффициент гармоник каскада в два-два с половиной раза. Хорошая АЧХ обеспечивается выбором достаточно большого тока покоя лампы. В каскаде используется автоматическое смещение, образующееся на резисторе R4, также через него вводится неглубокая местная ООС. При желании усилитель можно охватить общей ООС, подав в цепь катода триода часть сигнала с выхода усилителя через резистор R8.

В выходном каскаде используется фиксированное смещение, регулируемое подстроечным резистором R12. Основное назначение резистора R13 - обеспечить удобное измерение тока покоя выходного каскада.

Применение сложных каскодных источников тока обусловлено большим размахом переменного напряжения на анодах ламп (особенно в выходном каскаде). Использование простых источников на одном транзисторе (это относится и к варианту на полевом транзисторе с резистором в цепи истока), рекомендуемых некоторыми авторами, не обеспечивает приемлемой стабилизации тока в широком диапазоне частот. В выходном каскаде даже применение каскодного источника не решает всех проблем: на частотах выше 25...30 кГц становится заметным спад усиления из-за влияния емкостей транзистора VT4. Несколько расширить полосу частот каскада можно, заменив пару транзисторов VT4, VT5 одним высокочастотным высоковольтным p-n-р транзистором подходящей мощности (например, 2SB1011) Однако такие транзисторы менее доступны.

Коснусь еще одного вопроса, связанного с применением источников тока и их влиянием на качество звука. Идеальный источник тока, естественно, не окажет никакого влияния, но реальные могут влиять Прежде чем рекомендовать рассматриваемый вариант источника тока, я его достаточно подробно исследовал и существенного ухудшения спектра выходного сигнала в диапазоне звуковых частот не обнаружил. Для исследований использовались спектроанализатор НР-3585 фирмы Hewlett-Packard с динамическим диапазоном 120 дБ и селективный вольтметр D2008 фирмы Siemens с еще более впечатляющим значением этого параметра - 140 дБ. Конечно, отличия от резистивного каскада существуют, но только на уровне -80...-90 дБ. Во многих случаях это уже ниже уровня собственных шумов каскада. На что действительно надо обратить внимание, так это на уровень шумов каскада с источником тока. Применение активных элементов в цепи анода приводит к некоторому возрастанию шумов (это в равной мере относится и к источникам выполненным на лампах) но для каскадов, работающих с входными сигналами в сотни милливольт, принципиального значения это не имеет Во входных каскадах высокочувствительных усилителей это следует иметь в виду.

Я не сторонник борьбы "за чистоту ламповых рядов" ради самой борьбы и отрицания реальных преимуществ гибридных устройств. Результатом такого подхода, на мой взгляд, будут топтание вокруг решений 50-х годов прошлого века и рассуждения о необходимом составе используемого припоя. Самое важное в нашем случае, что сигнал усиливается именно лампами (через источник тока переменная составляющая практически не протекает).

О некоторых деталях усилителя

Конкретные типы элементов, не указанные на схеме, я перечислять не буду, но хочу обратить внимание на некоторые из них.

В катодных цепях лампы желательно использовать резисторы (R4 и R13) с допускаемым отклонением сопротивления от номинала не более ±1 % (С2-1. С2-29В и т. п.), а в качестве подстроечных (R5, R12, R14) - многооборотные (подойдут СПЗ-37, СПЗ-39, СП5-2, СП5-3, СП5-14). Разделительный конденсатор (С4) - металлобумажный (МБГЧ, МБГО, МБГТ) с номинальным напряжением не менее 400 В. Но, как отмечалось, допустимо применение и полиэтилентерефталатных (К73-17) с таким же напряжением. Требуемую емкость получают параллельным соединением соответствующего числа конденсаторов.

Вместо варистора SIOV-S05K180 можно использовать газовые разрядники или телекоммуникационные супрессоры с малой емкостью на подходящее напряжение.

Транзистор VT4 необходимо установить на теплоотвод, способный рассеять мощность 5...6 Вт (необходимая площадь охлаждающей поверхности - 120... 150 см2).

Налаживание усилителя

При использовании заведомо исправных деталей и правильном монтаже проблем с налаживанием не возникает. Для налаживания усилителя, как минимум, необходим авометр, очень желательно наличие генератора сигналов 3Ч и осциллографа. Перед включением усилителя установите движки подстроечных резисторов R5 и R14 в верхнее (по схеме) положение, a R12 - в нижнее. Это не ошибка, лампу VL1.2 надо полностью открыть. Вход усилителя должен быть замкнут накоротко. Сначала установите ток покоя первого каскада (резистором R5), затем выходного (R14). Нужного напряжения на аноде VL1.2 добиваются в последнюю очередь (резистором R12).

Точно напряжение смещения VL1.2 подбирают, подав на вход усилителя сигнал от генератора (выход, естественно, должен быть нагружен на эквивалент нагрузки). Необходимо добиться максимального размаха напряжения сигнала на аноде выходной лампы при минимальных искажениях. Следует заметить, что ограничение верхней полуволны выходного напряжения происходит довольно резко, что связано с выходом источника тока из режима стабилизации. При использовании лампового источника тока этот эффект менее заметен.

В выходном каскаде есть интересная возможность. Разделительный конденсатор С4 и индуктивность первичной обмотки выходного трансформатора образуют низкодобротный последовательный колебательный контур. При емкости С4, указанной на схеме, его резонансная частота приблизительно равна 10 Гц и существенного влияния на выходной сигнал не оказывает. Уменьшая емкость конденсатора, можно сдвинуть резонансную частоту контура в область более высоких частот, что приведет к подъему (расширению) АЧХ в низкочастотной области. Но это чисто теоретически, реальные процессы, происходящие в этом контуре, гораздо сложнее, и результат не всегда однозначен. Я не берусь давать по этому поводу рекомендации (оценивать это надо на слух) и проведение такого эксперимента оставляю на усмотрение читателей.

Результаты испытаний

Описанный усилитель был собран на макетной плате. Питание осуществлялось от нестабилизированного выпрямителя с LC-фильтром. Ниже приведены измеренные параметры усилителя и спектры выходного сигнала при работе в различных режимах (общая ООС не использовалась). Сопротивление нагрузки - 4 Ом, напряжение питания - 370 В.

  • Номинальная выходная мощность, Вт.....1.2
  • Номинальное входное напря­жение на частоте 1 кГц, В.....0,25
  • Коэффициент усиления на частоте 1 кГц: первого каскада.....60
  • второго каскада.....6
  • Выходное сопротивление приведенное Ом.....1839
  • Коэффициент гармоник на частоте 1 кГц не более, при выходной мощности Bт 1,2.....4,4
  • 0,1.....1,0
  • Полоса пропускания на уровне - 1 дБ, кГц, при выходной мощности. Вт: 1,2.....0.03...18
  • 0,2.....0,02...22
  • Коэффициент демпфирования на частоте 1 кГц при выходной мощности 1,2 Вт.....2,99
  • Скорость нарастания выходного напряжения В/мкс при выходной мощности 0,2 В.....1,2

АЧХ усилителя при двух значениях выходной мощности показана на рис. 9. Спектр выходного сигнала частотой 1 кГц при выходной мощности 1,2 Вт изображен на рис. 10, частотой 30 Гц (при той же выходной мощности) на рис. 11 то же, но при выходной мощности 0,1 Вт - на рис. 12 и 13 соответственно.

Реакцию усилителя на импульсный сигнал частотой 1 кГц при выходной мощности 1 2В иллюстрирует рис. 14.

По сравнению с усилителем с традиционным выходным каскадом и не переделанным трансформатором параметры явно улучшились. Если в области средних и высших частот изменения невелики (на частоте 1 кГц коэффициент гармоник уменьшился приблизительно на 12%) то в области низких частот выигрыш значительный. Произошло заметное расширение полосы в область низших частот при существенно меньшем уровне гармоник (на частоте 50 Гц при мощности 1,2 Вт почти в два раза) При выходной мощности 0,1 Вт коэффициент гармоник на частоте 30 Гц не превышает 1,2 % В спектре выходного сигнала во всех режимах преобладает вторая гармоника, число высших гармоник ограничено и, кроме того, их уровень очень мал.

Заключение

Получившийся усилитель это, конечно, не "Ongaku", но и не говорящая консервная банка неизвестного производства за 20 долл. У него чистый певучий звук. Конечно, небольшая выходная мощность накладывает определенные ограничения на его применение: для озвучивания комнаты средних размеров такой мощности явно недостаточно, но как телефонный усилитель он будет совсем не плох Я бы сравнил этот усилитель с флакончиком пробных духов. Вы сможете сами оценить особенности "лампового" звука и решить, насколько он вам нравится, а не полагаться на мнение других людей.

Усилитель можно усовершенствовать. Весьма перспективное направление - использование более "линейных" ламп. Результаты моделирования показали, что применение в выходном каскаде триодов средней мощности позволяет уменьшить коэффициент гармоник на полной мощности еще в полтора-два раза. Но это неизбежно приводит к увеличению числа ламп (которые к тому же дефицитны) и усложнению схемы.

Не сошелся свет клином и на трансформаторах ТВЗ. Опытные радиолюбители на основе описанного подхода, используя трансформаторы более высокого качества, могут создавать свои конструкции с гораздо лучшими параметрами Потенциальные возможности выходного каскада с источником тока довольно велики.

В заключение хочу заметить, что использование трансформаторов типа ТВЗ - это большой компромисс между качеством и стоимостью. В высококачественном ламповом усилителе необходимо использовать хороший выходной трансформатор.

Литература

  1. Цыкин Г. С. Трансформаторы низкой частоты. - М Связьиздат 1955.
  2. Войшвилло Г. В. Усилители низкой частоты - М.: Связьиздат 1939
  3. Ложников А. П., Сонин Е. К. Каскодные усилители - М Энергия 1964
  4. Хоровиц П. Хилл У. Искусство схемотехники. - М.: Мир, 1983.

В данном материале приводится справочная информация по выходным звуковым трансформаторам ТВЗ - размеры сердечника, количество витков и диаметр провода обмоток. Информация будет полезна для использования данных унифицированных трансформаторов в качестве готовых выходных, в схемах самодельных ламповых усилителей. Приведены примеры возможных доработок ТВЗ для улучшения АЧХ и уменьшения коэфициента искажений.

Подключение трансформатора ТВЗ к схеме не вызовет проблем. Боле низкоомная обмотка, намотанная толстым проводом - подключается к динамику. Обмотка с тонким проводом и сопротивлением несколько десятков Ом - к аноду лампы УНЧ. Список отечественной звуковоспроизводящей аппаратуры где используются трансформаторы ТВЗ и их технические параметры показаны в таблице:

Параметры стандартных трансформаторов ТВЗ-Ш, ТВЗ-1-9, ТВЗ-1-1 и другие, показаны в таблице ниже:

Стандартные параметры наиболее распространённого трансформатора ТВЗ-1-9:

индуктивность первичной обмотки L1 - 6,5 Гн;
индуктивность рассеяния (приведенная к первичной обмотке) Ls - 56 мГн;
емкость (приведенная к первичной обмотке) С - 0,3 мкФ;
активное сопротивление первичной обмотки г1 - 269 Ом;
активное сопротивление вторичной обмотки г2 - 0,32 Ом;
коэффициент трансформации n - 37.

Чаще всего трансформаторы расчитаны на подключение динамиков сопротивлением 4 Ома. Для других значений выходного сопротивления нагрузки их необходимо домотать.

Rн = 4 Ом, вторичная = 58 витков (без переделки)
Rн = 8 Ом, вторичная = 82 витков (домотать 24 витка)
Rн = 16 Ом, вторичная = 116 витков (домотать 58 витков)

Трансформатор ТВЗ-1-9 широко известен среди радиолюбителей. Он обладает достаточно хорошими характеристиками, но вместе с тем его можно значительно улучшить. Для этого необходимо поверх всех обмоток домотать еще одну обмотку (в один ряд, проводом ПЭЛ-0,62). Если позволяет место, то можно намотать и два ряда. Эту обмотку необходимо последовательно соединить с выходной обмоткой. Благодаря дополнительной обмотке трансформатор становиться секционным, благодаря чему уменьшается КНИ. Так же улучшается КПД трансформатора на высоких частотах. Доработка трансформатора очень проста, но при этом достаточно эффективна, хотя естественно не сравнится с полной его перемоткой.

При перемотке трансформатора верхний слой трансформаторной бумаги следует удалить и заменить его одним слоем максимально тонкой трансформаторной бумагой или кальки. Убирать полностью трансформаторную бумагу категорически нельзя, так как при этом возможно пробивание напряжения между первичной и вторичной обмотками. По верх трансформаторной бумаги и следует доматывать дополнительную обмотку. Причем ее так же сверху необходимо изолировать еще одним слоем трансформаторной бумаги.

Необходимо отметить, что при последовательном соединении штатной и домотанной обмотки трансформатора их общее сопротивление возрастает с квадратичной зависимостью, поэтому трансформатор с домотанной обмоткой будет рассчитан на подключение нагрузки с сопротивлением в 16 Ом. Для подключения акустической системы с сопротивлением в 4 Ома необходимо дополнительную обмотку соединить параллельно со штатной обмоткой трансформатора.

Аналогично можно доработать и трансформатор ТВ-ЗШ, но при этом придется доматывать высоковольтную обмотку, что намного сложнее из за малого диаметра проволоки и необходимости в большом сопротивлении катушки.

© Павел Крыницкий, 6.04.2008
(с дополнениями от 22.05.2009)


Комментарии к статье:

Добавил: Раиль
Уважаемые специалисты, Вы или сами ничего не собирали, или начитались "очень умной" литературы. Удивительно, что нет советов ставить вместо переменных резисторов, только "Alps" или позолоченные провода на выход.
"Умники" тоже когда-то говорили, что только "Alps" и только золотые провода. Дорогие конструктора, решившие собрать ламповый усилитель, улучшайте ТВЗ, перематывайте ТВК, делайте из-того, что есть. Иначе никогда не насладитесь ламповым звуком и не познаете радости конструирования. А потом уже посмеётесь над "советчиками", которые пишут здесь, что ТВЗ не улучшить. Не было высоких требований к ТВЗ и вот и делали подешевле. Поэтому улучшить можно все, всё советское, бытовое. Если ГОСТ пишет полосу 63-12500 Гц, зачем делать ТВЗ 40-18000 Гц?
Дата: 2018-12-05
Дата: 2016-02-27 Дата: 2015-11-24 Дата: 2015-08-25 Дата: 2014-04-28 Дата: 2012-09-21 Дата: 2012-08-04 Дата: 2012-02-01 Дата: 2010-07-16

Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта